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We consider the classical problem of the laminar flow of an incompressible rotating
fluid above a rotating, impermeable, infinite disk. There is a well-known class of
solutions to this configuration in the form of an exact axisymmetric solution to the
Navier–Stokes equations. However, the radial self-similarity that leads to the ‘rotating-
disk equations’ can also be used to obtain solutions that are non-axisymmetric
in nature, although (in general) this requires a boundary-layer approximation. In
this manner, we locate several new solution branches, which are non-axisymmetric
travelling-wave states that satisfy axisymmetric boundary conditions at infinity and at
the disk. These states are shown to appear as symmetry-breaking bifurcations of the
well-known axisymmetric solution branches of the rotating-disk equations. Numerical
results are presented, which suggest that an infinity of such travelling states exist in
some parameter regimes. The numerical results are also presented in a manner that
allows their application to the analogous flow in a conical geometry.

Two of the many states described are of particular interest. The first is an exact,
nonlinear, non-axisymmetric, stationary state for a rotating disk in a counter-rotating
fluid; this solution was first presented by Hewitt, Duck & Foster (1999) and here we
provide further details. The second state corresponds to a new boundary-layer-type
approximation to the Navier–Stokes equations in the form of azimuthally propagating
waves in a rotating fluid above a stationary disk. This second state is a new non-
axisymmetric alternative to the classical axisymmetric Bödewadt solution.

1. Introduction and formulation
The analysis of flows driven by the action of a rotating boundary has long been an

area of fundamental interest to a broad range of investigators. The canonical problem
is the flow above a rotating disk in a rotating fluid, which has applications in areas as
diverse as geophysics, crystal growth technology, rotating machinery and disk-based
magnetic data storage methods.

The work of Kármán (1921) considered the incompressible flow over an infinite
rotating disk in a fluid that is stationary far from the disk. It was shown that by
assuming an axisymmetric radial similarity for the flow, the Navier–Stokes equations
could be reduced exactly to a set of nonlinear ordinary differential equations. Numer-
ical solution of these equations shows that the rotating disk acts to transport fluid
radially outward in a boundary-layer-scale region above the disk (although there is no
boundary-layer approximation necessary). The disk behaves as a centrifugal fan, with
fluid being drawn vertically towards the ‘fan’ as fluid is transported radially outwards.
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This mechanism is crucial to the description of spin-up readjustment discussed some
time later by Greenspan & Howard (1963).

The similarity solution of von Kármán does not rely on the fluid being stationary
far from the disk and the same form can be applied to the case of a rotating fluid
over a stationary disk, as considered by Bödewadt (1940). In this case, the balance
of centrifugal effects and the radial pressure gradient that is required for rigid body
rotation is broken near to the disk resulting in a radial flow directed towards the axis
of rotation and a vertical transport of fluid away from the disk.

The configurations of von Kármán and Bödewadt are two limiting cases of a more
general problem, namely the axisymmetric flow of a rotating fluid over a rotating disk.
When the far-field fluid and the disk are both allowed to rotate, a family of solutions
can be located that has an associated parameter, Ω∞/Ωdisk , which is the ratio of the
angular frequencies associated with the far-field fluid and the disk. The details of this
more general problem were presented by Batchelor (1951), together with the related
problem of the flow driven by the rotation of two parallel disks that are allowed to
rotate independently. It should be noted that in the second configuration, a further
parameter must be introduced, which is a Reynolds number based on the gap width
of the rotating disks.

In this work we restrict attention to the more fundamental problem of the flow
induced by a single infinite disk, although both the far-field fluid and the disk are
allowed to rotate. The associated parameter is denoted by Ŵ e = Ω∞/Ωdisk , which is
the ratio of the two characteristic frequencies, as described above. The flow above
the disk is defined in terms of a cylindrical polar coordinate system (r, φ, z), with
a radial coordinate measured from the axis of rotation, φ an azimuthal coordinate
and z measured parallel to the axis of rotation. The three velocity components at
the point (r, φ, z) are denoted by U, W and V , corresponding to the velocities in the
radial, azimuthal and normal directions respectively.

Here we wish to investigate non-axisymmetric solutions to the classical rotating-
disk problem (and closely related flows). In this regard, it is possible to search for
a solution to the Navier–Stokes equations with a radial dependence of the form
first presented by von Kármán, while also allowing a dependence on the azimuthal
coordinate φ:

(U, W, V )T = (rÛ(η, φ, t), rŴ (η, φ, t), E1/2V̂ (η, φ, t))T , (1.1)

P = r2Ŵ 2
e /2 + E Q(η, φ, t). (1.2)

Here P is a pressure distribution, η = E−1/2z is a scaled coordinate, and E =
ν/(Ωdiskh

2) is the Ekman number based on the kinematic viscosity ν and a natural
lengthscale h.

For a solution in this form, the unsteady governing equations for the flow over a
rotating disk are reduced to

Ût + Û2 + V̂ Ûη − Ŵ 2 + Ŵ Ûφ = Ûηη − Ŵ 2
e + E

{
Ûφφ − 2Ŵφ

r2

}
, (1.3)

Ŵ t + 2ÛŴ + V̂ Ŵ η + ŴŴ φ = Ŵ ηη + E

{
Ŵφφ + 2Ûφ − Qφ

r2

}
, (1.4)
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V̂t + V̂ V̂η + Ŵ V̂φ = −Qη + V̂ηη + E

{
V̂φφ

r2

}
, (1.5)

2Û + V̂η + Ŵφ = 0. (1.6)

The boundary conditions are formed from no-slip and impermeability constraints at
the disk

Û = V̂ = 0, Ŵ = 1 on η = 0, (1.7)

together with a rigid-body rotation far from the disk

Û → 0, Ŵ → Ŵe as η →∞. (1.8)

In this system, if we set ∂/∂φ = 0 we obtain an exact reduction of the Navier–
Stokes equations; the classical nonlinear, axisymmetric, rotating-disk equations are
thus obtained in the form

Û2 + V̂ Ûη − Ŵ 2 = Ûηη − Ŵ 2
e , (1.9)

2ÛŴ + V̂ Ŵ η = Ŵ ηη, (1.10)

2Û + V̂η = 0. (1.11)

Although it is common to combine this system into a pair of equations, one of third
and the other of second order, we shall use the formulation given above throughout
this paper.

The first term in the expression for the pressure (1.2) is that required to achieve
a rigid-body rotation far from the disk, while the term proportional to the Ekman
number can be determined separately.

The solution structure of (1.9)–(1.11) has been discussed by many authors. In
particular, it has been shown that an infinity of solution branches can be found in
the vicinity of Ŵe = 0, and similar non-uniqueness can be located around a singular
solution structure near Ŵe ≈ ±1.4355. The exact form of the non-uniqueness and the
relationship between the successive solution branches will not be dealt with in detail
here; the reader is referred to the review article of Zandbergen & Dijkstra (1987) for
further details.

A convenient measure of the solutions to (1.9)–(1.11) is the value of V̂ at the edge
of the ‘boundary layer’†. We shall refer to this quantity as V̂∞, which is formally
defined to be the limiting value of V̂ (η) as η →∞. In terms of ‘spin-up’ problems this
quantity can be interpreted as the ‘Ekman suction’, that is, the flow into or out of the
layer forced by a net radial inflow/outflow near to the disk surface. It is readily seen
from the form of (1.9)–(1.11) that the governing equations remain unchanged under
the transformations (η → −η, V̂ → −V̂ ), due to a reflectional symmetry about the
plane of the disk. In this paper we consistently assume η ∈ [0,∞), in which case, if
V̂∞ is negative the flow is directed towards the disk surface.

The first four solution branches to the equations (1.9)–(1.11) in the neighbourhood
of Ŵe = 0 are shown in figure 1(a); these solutions can be extended to an infinity of
such solutions past the point (ii) noted in the figure. It is sufficient here to note that
these higher solution branches require successively larger domains and hence further
care is required in the numerical method. The solution branch may also be continued
beyond the point (i) shown in the figure, through V̂∞ = 0 at Ŵe = 1 (the trivial

† Although there is no formal boundary-layer approximation required at this stage, we shall still
refer to the region as a boundary layer for convenience.



290 R. E. Hewitt and P. W. Duck

0.8

0.4

0

–0.4

–0.2 –0.1 0 0.1 0.2

(i)
(a)

1

0

–4
–4 –2 0 2 4

(b)

–3

–2

–1

Ŵe
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Figure 1. The solution branches of the axisymmetric rotating-disk equations. (a) The first four

solution branches (near Ŵe = 0). (b) The branches of (a) are shown near to Ŵe = 0 together with

the singular solution branch near Ŵe ≈ −1.4335 (as marked by the vertical dashed line). A further

collection of isolated solution branches can be located near to Ŵe ≈ ±1.4335, but are not shown
here.

solution of rigid-body rotation) to the limiting Bödewadt solution as Ŵe → ∞. The
behaviour over a larger range of Ŵe is displayed in figure 1(b), which shows the same
solution branches over a broader range of Ŵe, together with a further solution that
becomes singular at Ŵe ≈ −1.4355. This solution can be continued from the singular
solution structure, as shown, to larger negative values of Ŵe, again connecting to the
Bödewadt solution as Ŵe → −∞. A similar isolated singular solution can be found
at Ŵe ≈ +1.4355, and higher-branch solutions can be found in the neighbourhood
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of ±1.4355 that we do not show here; the reader is again referred to the paper of
Zandbergen & Dijkstra (1987) for further details.

The above details concerning classical axisymmetric rotating-disk flows are well
known and presented here for later reference. This work is concerned with the
extension of the previously detailed solution branches to include the possibility of
non-axisymmetric flow states that still satisfy axisymmetric boundary conditions. In
this manner, we wish to look for a broader class of solution to the same physical
problem by relaxing our assumption concerning the symmetry of the flow. We note
here that Lai, Rajagopal & Szeri (1985) have made reference to non-axisymmetric
rotating-disk flows; however their solutions, though valid, are somewhat less natural
than those discussed herein. Only one class of flow discussed by Lai et al. is open to
physical interpretation and corresponds to a rotating disk in a fluid with a uniform
translation far from the disk.

The solutions we present here are more simply interpreted, and are closely related
to a weakly nonlinear temporal stability analysis of the classical rotating-disk states to
azimuthally propagating waves of the same self-similar form. In this sense, the analysis
presented herein is connected to the work of Hall, Balakumar & Papageorgiou (1992),
which effectively considered the stability of von Kármán’s solution (Ŵe = 0 in our
notation) to finite-amplitude, unsteady disturbances with an azimuthal wavenumber
of two.

The recent work of Hewitt, Duck & Foster (1999, hereafter referred to as HDF)
considered the steady, axisymmetric boundary-layer solutions for a swirling stratified
fluid in a rotating cone. This work made use of a similarity-type solution of von
Kármán form, and the governing equations were shown to reduce to the axisymmet-
ric rotating-disk equations in a sub-region of parameter space (as buoyancy forces
were removed and the cone flattened into a disk). In the work of HDF, a new steady,
exact solution to the Navier–Stokes equations was presented, corresponding to a
non-axisymmetric flow above a rotating disk. In Appendix A we provide further brief
details concerning the properties of this exact solution and, in Appendix B, show how
the consideration of a more general boundary-layer flow inside a conical container
(rather than above a rotating disk) motivates the consideration of azimuthally prop-
agating waves and hence leads to the discovery of further boundary-layer solutions
relevant to the flow over a rotating disk.

The format of this paper is as follows. In § 2, we give details of the method used
to determine the location of bifurcations to non-axisymmetric, travelling-wave states.
The main interest here is in states corresponding to azimuthally propagating waves;
however these results are complimentary to (and indeed motivated by) the existence
of the aforementioned exact, non-axisymmetric stationary solution, as described in
Appendix A. In § 3, we provide some numerical details regarding the computation
of fully nonlinear, non-axisymmetric states over broad ranges of the parameter Ŵe.
Finally, in § 4, we give some conclusions and comment on the stability of the new
solution branches.

2. Bifurcations to travelling-wave states
It must first be noted that all terms have been retained in the system (1.3)–(1.6), and

non-axisymmetric solutions of this form will (in general) require a boundary-layer
approximation before progress can be made. The approximation is straightforward,
under the assumption that E � 1, such that the velocity field can be formally expanded
to provide a leading-order system equivalent to that noted above but neglecting the
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Figure 2. The analogous coordinate system in a conical geometry.

bracketed terms. However, there is a particular exact form of stationary solution
to (1.3)–(1.6) that has been noted previously by HDF, further details of which are
presented in Appendix A. As we shall show, this exact solution occurs as a special
case in a class of more general (travelling-wave) states.

2.1. Periodic, non-axisymmetric states

The initial motivation for the work we present here comes from the observation of
transient, non-axisymmetric flows in a conical geometry during spin-down experi-
ments. If non-axisymmetric states can be located in the more fundamental problem
of an un-stratified, rotating-disk flow, then the continuation to a more general conical
boundary-layer with a stratified fluid is a straightforward procedure. With this in
mind, we discuss in Appendix B how the governing system of equations changes if
a conical geometry is considered rather than a flat disk. In general we may consider
a conical container with sidewalls that are at an angle of α to the horizontal, with
α = 0 providing the rotating-disk results (see figure 2).

One immediate consequence of the analysis of Appendix B is that bifurcations to a
stationary solution only exist in two special cases, that is, for a flat disk and a cone with
walls at an angle of α = π/3 to the horizontal. Since the geometry for this problem
can be changed in a continuous manner from the flat-disk case to the conical case, it is
unclear how the bifurcating, stationary, non-axisymmetric solution can be continued
in the cone-angle parameter α. In particular, when the geometry is perturbed away
from that of a flat disk into a conical shape with small wall angle, the eigenrelation
(B 10) is no longer satisfied and a bifurcated stationary solution cannot be located.
To relocate a bifurcation to a non-axisymmetric state for a conical geometry a further
free parameter is required. To resolve this apparent difficulty we are forced to consider
a broader class of (boundary-layer) solution, allowing for states that are azimuthally
propagating waves. This is accomplished through the introduction of an additional
parameter, namely Ω, which corresponds to the frequency of the wave.

As discussed in Appendix B, the corresponding boundary-layer system in a conical
geometry is simply obtained from (1.3)–(1.6) by neglecting terms of O(E) and making
the transformation ∂/∂φ → β−1∂/∂φ (where β = cos α). A solution can then be
sought in the form

(Û, Ŵ , V̂ )T = (U0(η),W0(η), V0(η))T + ε(Ũ(η), W̃ (η), Ṽ (η))T exp{i(nφ+ Ωt)}, (2.1)

with ε � 1. As before, at O(ε) there is a linear eigenvalue problem to be solved
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for the critical value of Ŵe at which a bifurcation to a travelling-wave state can be
located. In this case the eigenvalue relation to be satisfied is of the form

G(Ŵe, λ, Ω) = 0, (2.2)

where λ denotes the quantity n β−1 = n/ cos α.
The condition (2.2) determines a functional relationship between the three real

quantities Ŵe, λ and Ω. It can be approached in two distinct ways. One method is to
specify a real value for Ŵe and solve the O(ε0) rotating-disk equations, then one can
determine a complex value for λ for a given real frequency Ω. If λ can be made real
for a given combination of Ŵe and Ω, then at this critical value of Ŵe we may expect
a bifurcation to a travelling-wave state with an integer wavenumber n, provided that

λ = n β−1, (2.3)

for some real cone angle α, where β = cos α.
The second approach is essentially that of a linear temporal stability analysis of

the rotating-disk equations. For a specified axisymmetric solution at a fixed value
of Ŵe, one can determine a complex frequency Ω for a real λ. The stability of the
axisymmetric solution to modes of ‘wavenumber’ λ is then determined by the sign of
Ωi (the imaginary part of Ω) with Ωi < 0 indicating temporal instability.

The advantage of notionally considering a complete class of conical geometries
with α ∈ [0, π/2) is that one can solve the same equations relevant to the flat-disk
geometry but allow the wavenumber to be a real value (rather than an integer). This
can be allowed with the understanding that, for a given real λ > 1, the solution is
physically appropriate (i.e. satisfies the azimuthal periodicity constraint) in a sequence
of conical geometries of angle α = arccos(n/λ) with an integer wavenumber n.

Although a solution to (2.2) cannot be found with n an integer for a general α with
Ω = 0, by allowing for a non-zero Ω there is no difficulty in determining how the
bifurcation point varies as α is continued from α = 0 (the flat-disk case). We show the
relationship between λ = n/ cos α and Ŵe in figure 3(a), together with Ω and Ŵe in
3(b). The bifurcation to an exact non-axisymmetric solution described in Appendix
A occurs at λ = 2 (i.e. n = 2, α = 0 or n = 1, α = π/3) at which point Ŵe ≈ −0.14485
(shown as the dashed line) and Ω = 0.

On perturbing α away from zero, or equivalently varying λ, the bifurcation point
can be seen to move to a different location on the axisymmetric rotating-disk solution
branch (that is, to a different value of Ŵe). However, the states arising from the
bifurcation point at α 6= 0 are typically travelling solutions with Ω 6= 0.

The two numbered points (i, ii) noted in both (a) and (b) of figure 3 correspond
to the same axisymmetric solution to the rotating-disk equations. This point is at
Ŵe ≈ −0.1605 and corresponds to the limit point of the solution branches shown in
figure 1.

We have already mentioned that one can view the bifurcation analysis as cor-
responding to a linear temporal stability analysis of the axisymmetric solutions. A
stability analysis of this form has been presented before for perturbations that are
axisymmetric by Bodonyi & Ng (1984). It was shown that there is a stability transition
(to unsteady axisymmetric perturbations) at the ‘nose’ of the solution branch shown
in figure 1, where Ŵe ≈ −0.1605. It is interesting to note that the mode that gives
rise to the exact, n = 2 non-axisymmetric stationary state at Ŵe ≈ −0.14485 may be
regarded as a non-axisymmetric continuation of the same mode located by Bodonyi
& Ng. As shown in figure 3, on approaching the limit point denoted by (i), λ→ 0 and
Ω → 0, reproducing the neutrally stable axisymmetric eigenmode of Bodonyi & Ng.
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Figure 3. The location of the bifurcation point for varying values of λ = n/ cos α and frequency Ω.

When Ŵe ≈ −0.14485 there is a bifurcation to a λ = 2, Ω = 0 (stationary) mode, as described in
Appendix A.

At this same point on the axisymmetric solution branch, there is another neutrally
stable mode with λ ≈ 2.9 and Ω ≈ 0.08, denoted as point (ii) in figure 3. This second
mode is only relevant to a set of conical geometries however, since λ is not an integer
and therefore azimuthal periodicity cannot be achieved for a flat disk.

Our primary concern however is with bifurcations to new states relevant to the
flow over a flat disk, i.e. α = 0, for which we must have λ = n, an integer azimuthal
wavenumber. It can be easily observed from figure 3 that continuation of the λ = 2
bifurcation reveals a further bifurcation to a non-axisymmetric travelling-wave state
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with a wavenumber of unity at Ŵe ≈ −0.1493. The bifurcated state is an azimuthally
propagating wave, with a frequency of Ω ≈ −0.09.

It is the presence of this second n = 1 travelling-wave solution that resolves the
apparent confusion over the presence of the bifurcation to stationary states with
n = 2 when α = 0 and n = 1 when α = π/3 (both occurring at Ŵe ≈ −0.14485, as
described in Appendix B). When allowing for non-axisymmetric solutions that travel
circumferentially, we observe that for the flat-disk case (α = 0) there are at least
two bifurcation points: one is stationary with a wavenumber n = 2 while the other
is a travelling solution with a wavenumber of n = 1. If we follow these bifurcated
states while increasing α from the flat-disk case to an angle of α = π/3, then we
can immediately observe from figure 3 that the n = 2 state begins to travel with an
increasing frequency, while the n = 1 state travels more slowly. When α is increased
through α = π/3, the (n = 1) state that was ‘previously’ travelling becomes stationary
before beginning to travel in the opposite sense as the cone angle is increased further.

2.2. Bifurcations from higher-branch axisymmetric states

As shown in figure 3, the bifurcation to a non-axisymmetric state can be continued
for varying real wavenumber λ, revealing a further travelling state with n = 1 at
Ŵe ≈ −0.1492. The numerical results of figure 3 terminate when Ŵe ≈ −0.1605, that
is, at the limit point of the branch-1 solution shown in figure 1. However, there is no
difficulty in continuing the calculations onto successive branches of the axisymmetric
rotating-disk equations. In this manner we can obtain the results of figure 4, which
shows the same data presented by figure 3 but continued further onto the second
branch shown in figure 1.

As can be seen from figure 4, when λ is increased further the bifurcation point
moves to the second branch and yet more modes relevant to the flat-disk geometry are
revealed (where λ is an integer). In particular, there is a bifurcation to an n = 3 state
with Ω ≈ 0.08 at Ŵe ≈ −0.1588. Similarly, bifurcations to modes with an azimuthal
wavenumber n = 4 can be found on the second branch at Ŵe ≈ ±0.06.

There is an established literature (see Zandbergen & Dijkstra 1987 for a list
of references) on the structure of the higher-branch axisymmetric solutions to the
rotating-disk equations. The most notable feature of these states is the relationship
of a solution on the mth branch to the corresponding (m− 1)-branch solution. When
states from consecutive branches are compared they are found to differ only in a
region displaced from the boundary. In fact, the m-branch solution is formed from
the (m − 1)-branch solution with the addition of an extra ‘inviscid hump’ into the
velocity profiles.

As a consequence of the inviscid-cell-type structure of these higher branches, if the
eigenfunctions in the bifurcation analysis decay sufficiently rapidly with the boundary-
layer coordinate, there will be an analogous degeneracy of the bifurcated states. In
particular, if a bifurcation point can be located on the (m− 1) branch corresponding
to some eigenmode, then the same mode is also appropriate to the mth branch since
the addition of a further ‘inviscid hump’ at the end of the velocity profiles simply
acts to broaden the range of possible eigensolutions. Numerical results confirm this
scenario, with the eigenfunctions rapidly approaching zero within the extent of the
hump. We therefore note that, at least when considering weakly non-axisymmetric
bifurcated states, an infinity of such solutions are likely to exist, again distinguished
by the addition of an extra inviscid cell. However, these (axisymmetric) higher-branch
states are themselves all increasingly unstable to axisymmetric perturbations and have
rather aphysical velocity profiles.
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Figure 4. The location of the bifurcation point for varying values of λ = n/ cos α and frequency
Ω. The bifurcation point here has been continued onto the second branch of solution shown in
figure 1.

So far in this work we have presented details of just the first five bifurcations
found near the ‘nose’ of the solution branches of figure 1. However, the computations
can be extended to locate further bifurcations to non-axisymmetric states of higher
azimuthal wavenumber by applying the same techniques discussed previously; these
other states arise from the higher-branch axisymmetric solutions. In general, one can
determine a set of complex eigenvalues {Ω} for given integer values of λ at any point
on the axisymmetric solution branches. Bifurcation points can then be located via
a local search technique, varying Ŵe along the higher-branch states until Ωi = 0.
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the state shown at 1/Ŵe = 0. The pair of vertical lines is at 1/Ŵe = ±(1.4335)−1, which are values
near which a singular structure can be found.

We do not present any details regarding these additional states beyond noting their
existence.

2.3. Bifurcations near the Bödewadt limit

Thus far we have concentrated on seeking bifurcating non-axisymmetric solutions in
the Ŵe ≈ 0 region of parameter space. However, as shown in figure 1(b), at least
one axisymmetric solution can be located at all values of Ŵe outside the interval
(−1.4335,−0.1605).

The von Kármán solution is found at Ŵe = 0, but there is an equally important
limiting solution as Ŵe → ±∞: the Bödewadt solution. It is easy to observe from the
rotating-disk equations (1.9)–(1.11), that as |Ŵe| → ∞, one can rescale in the following
manner:

Û = ŴeU
∗, (2.4)

Ŵ = ŴeW
∗, (2.5)

V̂ = |Ŵe|1/2V ∗, (2.6)

∂

∂η
= |Ŵe|1/2 ∂

∂η∗
. (2.7)

This leads to a system equivalent to (1.9)–(1.11), but parameterized by 1/Ŵe =
Ωdisk/Ω∞. In this rescaled system, the boundary conditions remain the same except

W ∗ = 1/Ŵe on η∗ = 0 and W ∗ → 1 as η∗ → ∞.
Figure 5 shows the same solution branches presented in figure 1(b), but in this

different parameterization. In this case, the von Kármán solution is obtained by
taking 1/Ŵe → ±∞ and the Bödewadt solution is at 1/Ŵe = 0, corresponding to a
rotating fluid over a stationary disk. Note that for the Bödewadt solution, the axial
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flow (at large values of η∗) is directed away from the disk since the net mass transport
in the ‘boundary-layer’ is radially inwards.

Given the above formulation, one can again seek bifurcations to non-axisymmetric
travelling-wave states by solving an analogous eigenvalue problem to (2.2). In this
manner we have located a bifurcation to a new state with an azimuthal wavenumber
n = 1, and frequency Ω ≈ 0.87 at 1/Ŵe ≈ 0.06. Continuation of the non-axisymmetric
state arising from this bifurcation will be shown in the following section to lead to a
new nonlinear boundary-layer solution to the Bödewadt configuration (1/Ŵe = 0).

3. Fully nonlinear travelling-wave states: numerical results
Having located a number of bifurcation points on the axisymmetric rotating-disk

solution branches, we now compute the nonlinear travelling-wave states that arise
from these critical points. Details of the nonlinear, exact, stationary state are shown
in Appendix A; however, the more general travelling-wave boundary-layer solutions
are much more complex to determine.

Starting with the non-axisymmetric rotating-disk equations, we employ a boundary-
layer approximation, assuming that E � 1. A solution of (1.3)–(1.6) with E = 0 is
then sought in the form

Û =

∞∑
m=−∞

Ûm exp{im(λφ+ Ωt+ ∆)}, (3.1)

where ∆ is an arbitrary phase and

Û = (Û, Ŵ , V̂ )T , Ûm = (Ûm, Ŵ m, V̂m)T . (3.2)

In this expression, we truncate the series at m = ±N (the maximum number of
Fourier modes), Ûm are complex, λ is a real ‘wavenumber’ and Ω is a real frequency.
Here, the wavenumber λ is as discussed in § 2, and can be allowed to be real (rather
than an integer) when considering a conical geometry. For this discussion however,
we shall only consider the nonlinear branches relevant to a flat disk, for which λ must
be an integer.

The decomposition (3.1) results in a 5× (2N + 1)-th order system

iΩUn−U ′′n + Ŵ 2
e δ0n +

N∑
m=−N

Un−mUm +Vn−mU ′m−Wn−mWm + imλWn−mUm = 0, (3.3)

iΩWn −W ′′
n +

N∑
m=−N

2Un−mWm + Vn−mW ′
m + imλWn−mWm = 0, (3.4)

2Un + V ′n + inλWn = 0, (3.5)

where δ0n = 1 if n = 0 and is zero otherwise, and a similar expression can be obtained
for the pressure correction Q(η, φ, t). The boundary conditions are

Û0,...,N = V̂0,...,N = 0, Ŵ0 = 1 (or 1/Ŵe), Ŵ1,...,N = 0 on η = 0, (3.6)

and

Û0,...,N → 0, Ŵ0 → Ŵe (or 1), Ŵ1,...,N → 0 as η →∞. (3.7)

Here, the alternative boundary conditions on Ŵ are those appropriate to the rescaled
Bödewadt limit, for which the Ŵ 2

e -term in (3.3) must be replaced by unity.
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This system is solved by Newton iteration following central differencing in η. To
force a non-axisymmetric solution we specify an amplitude measure for the first
harmonic in the form

Û ′1(0) = A, (3.8)

where A can be made real without any loss of generality, corresponding to choosing
the phase ∆ in (3.1). Since this extra condition has been imposed on the system, we
temporarily neglect the no-slip condition for the first harmonic.

Two methods of solving the difference equations were utilized. One method fixes
any two of the four real quantities {Ŵe, A, λ, Ω} and iterates on the remaining two

in order to satisfy the previously neglected (complex) no-slip condition Û1(0) = 0. A
second approach allows Ω = Ωr + iΩi to be a complex variable, which can be iterated
upon to satisfy the complex no-slip condition for any given A, Ŵe, λ (all real). A
nonlinear equilibrium state is then located in this latter approach by iterating on one
of the real variables {A, Ŵe, λ} to force Ωi = 0. On specifying Ŵe and λ, with A� 1,
this second method corresponds to a linear stability analysis of the axisymmetric
solutions to non-axisymmetric modes of wavenumber λ.

We now describe some of the nonlinear states that arise from the previously
described bifurcation points in the case α = 0 (a flat-disk geometry).

3.1. The n = 1 state, near Ŵe ≈ −0.1492

This n = 1 solution can be found in the neighbourhood of Ŵe ≈ −0.1492 for the first
branch of the axisymmetric solutions. By utilizing the numerical procedures detailed
above we have continued a non-axisymmetric travelling-wave solution away from this
critical value of Ŵe.

In figure 6(a) we show the mean component of the axial velocity far from the disk,
V̂0(η → ∞), for this new branch of solution over a range of Ŵe. Figure 6(b) shows
the variation in A = Û ′1(0), of the travelling-wave state as the branch is continued to
larger amplitudes. It is a trivial exercise to show that near to the bifurcation point we
have the scalings

A ∼ (Ŵe − Ŵbif)
1/2, Ω ∼ Ωbif + O(Ŵe − Ŵbif), (3.9)

where Ŵe = Ŵbif is the bifurcation point, at which the frequency of the wave solution
is Ωbif .

In figure 7, we show the behaviour of two different measures of the individual modes
as Ŵe is varied along the nonlinear non-axisymmetric branch. The first measure, figure
7(a), is the axial velocity component far from the disk surface,

V̂n∞ = V̂n(η →∞) + V̂−n(η →∞). (3.10)

The second measure, as shown in figure 7(b), is an integral quantity,

En =
1

2

∫ ∞
η=0

(Ûn + Û−n)2 + (Ŵn + Ŵ−n)2 dη. (3.11)

In these figures, although the ‘amplitudes’ of the higher modes are increasing, there
is no obvious evidence of any difficulty associated with the series (3.1). However, as
can be observed from figure 6(a), the solution branch appears to terminate at a finite
value of Ŵe. We have been unable to continue this n = 1 state to any further values of
Ŵe and it is our conjecture that the series (3.1) does in fact fail on approaching some
critical value of Ŵe. We note that the solution could not be continued despite a large
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Figure 6. The n = 1 nonlinear travelling-wave solution for a flat-disk geometry: (a) the ‘location’ of
the nonlinear branch, measured by the mean axial flow far from the disk surface; (b) the amplitude

A = Û ′1(0) of the nonlinear state.

number of computations, covering a broad range of domain sizes, grid sizes, number
of modes and a reduction of the steps in Ŵe during the continuation procedure.

To provide some numerical evidence towards our conjecture that the decomposition
(3.1) fails, we present some further results in figure 8. Figure 8(a) again shows
the quantities V̂n∞, but scaled by their weakly nonlinear descriptions. If the non-
axisymmetric state is in some sense weakly nonlinear, then one might expect that an
amplitude measure of the nth mode would behave in the following manner:

V̂n∞ ∼ cn(Ŵe − Ŵbif)
n/2, (3.12)



Non-axisymmetric rotating-disk flows 301

–0.146

1

Ŵe
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Figure 7. The n = 1 nonlinear travelling-wave solution for a flat-disk geometry. (a) The axial flow
at infinity for the nth mode. (b) An integral measure of the nth mode. The series (3.1) was truncated
at N = 6 in these calculations.

where {cn} is a set of real coefficients. If the non-axisymmetric solution branch remains
only weakly nonlinear, then the ratio

cn1V̂n∞
cnV̂

n
1∞

(3.13)

should remain nearly order one. A similar argument can be applied to any amplitude
measure, and in particular to the quantities En, which are shown in figure 8(b).

As can be observed from figure 8, the higher modes are increasingly sensitive to
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Ŵe

cn 1V̂
n∞

/(
c n

 V̂
n 1∞

)

0

–0.150 –0.146 –0.142 –0.138
0

(a)

(b)

3
2

5

4

6

4

2

3

5

6

–0.142 –0.138

10

20

30

40

10

20

30

40
ĉ
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Figure 8. The n = 1 nonlinear travelling-wave solution for a flat-disk geometry: (a) and (b) show
measures of the modes presented in figure 7. A deviation from unity shows the departure from a
weakly nonlinear behaviour.

changes in Ŵe as the limit of our computations is approached. The breakdown of
the numerical approach may also be connected to another suggested feature, namely
V̂0∞ → 0. This condition is obviously significant in the exact solution of Appendix A,
with V̂0∞ > 0 leading to (spatially) exponentially growing states. Nevertheless, without
a corresponding asymptotic description of the more general states that displays these
features, the failure of (3.1) remains a conjecture. However, the characteristic features
noted for the failure of this n = 1 solution appear to be generic, as we shall illustrate
further by a nonlinear continuation of the n = 3 state.
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Figure 9. (a) The axial flow at infinity for the first six modes as the n = 3 state is continued to

finite amplitude. (b) Profiles of |Û6(η)| near the critical value of Ŵe at which the n = 3 solution
fails.

3.2. The n = 3 state arising from a branch-2 axisymmetric state

As in the case of the n = 1 state, the nonlinear continuation of the n = 3 solution
fails at a critical value of Ŵe with V̂0∞ ≈ 0. In this instance the failure of the series
expansion (3.1) is more convincing, as can be seen by a comparison of any amplitude
measure of the individual modes near the critical point. In figure 9(a) we take the
axial flow at infinity as representing the amplitude of the modes, and compare them
over the range of Ŵe for which numerical data can be obtained. It is easily seen that
near the critical value the higher harmonics are all becoming of comparable size.

A typical velocity profile for varying Ŵe is shown in figure 9(b), clearly illustrating
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N A Ω

3 0.5615 0.8361
4 0.5825 0.8325
5 0.5941 0.8309
6 0.5992 0.8304
8 0.6025 0.8302

Table 1. Variation of A = Û ′1(0) and Ω on the number of modes in the series (3.1) for the

nonlinear state at 1/Ŵe = 0, computed with 103 grid points in the domain η ∈ [0, 200].

1/Ŵe

–0.12 0 0.08
0

1.6

1.2

0.8

0.4

0.04

A

–0.08 –0.04

N = 7

N = 6

N = 4

N = 2

Figure 10. Variation of the amplitude measure, A, following the nonlinear state arising from the
n = 1 bifurcation near the Bödewadt limit. The effect of truncating the series (3.1) at N = 2, 4, 6, 7

is shown. There is a new, non-axisymmetric state predicted for 1/Ŵe = 0, A ≈ 0.6; this is a
boundary-layer alternative to the classical Bödewadt solution for a rotating fluid above a fixed
plane.

a growing lengthscale as Ŵe approaches the limiting value. One may expect that a
description of the large-η behaviour may be obtainable; however, numerical results
indicate that the velocity components for each mode decay (spatially) at a comparable
rate. As a consequence, the V̂ Ûη term in the governing equations ensures that all the
modes remain coupled in any large-η expansion.

3.3. A nonlinear, non-axisymmetric alternative to the Bödewadt solution

As we have noted in § 2.3, there is a bifurcation to a non-axisymmetric travelling-wave
state near 1/Ŵe ≈ 0.06, with Ω ≈ 0.87. By employing our numerical approach it is
straightforward to compute a nonlinear continuation of this state.

The computations we present herein have been performed with a range of modes
from 2 to 8 and a range of domains/grid sizes to ensure accurate computations.
A truncation of the series (3.1) at N = 8, with 103 grid points over a domain of
η ∈ [0, 200] was found to be sufficient to accurately determine the nonlinear, non-
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Figure 11. Instantaneous velocity fields in the (r, φ)-plane at fixed values of η for the nonlinear,

non-axisymmetric, travelling-wave alternative to the Bödewadt solution (at 1/Ŵe = 0). The corre-
sponding values of η are (a) η = 2.5, (b) η = 10, (c) η = 17.5, (d) η = 25, (e) η = 32.5, (f) η = 47.5.
All the velocity fields are presented with Ωt + ∆ = 0. This state has been computed with N = 8
modes, and 1000 equally spaced grid points over the domain η ∈ [0, 200].

axisymmetric alternative to the Bödewadt solution at 1/Ŵe = 0. These values were
a practical maximum for workstation-based computations of the solution branches
due to the storage requirements of the solution method. We provide some numerical
data on the effect of varying N in table 1.

Although this non-axisymmetric state can be continued to higher amplitude, as
shown in figure 10, we note that in general additional modes must be included into
the numerical scheme. Figure 10 clearly shows the bifurcation point and the presence
of a nonlinear, non-axisymmetric state available when 1/Ŵe = 0. In figure 11 we
illustrate the velocity field over a unit radial distance in the (r, φ)-plane at fixed values
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Figure 12. The axial velocity at the edge of the boundary layer V̂ (η → ∞, φ) and a shear stress

component at the disk Ŵη(η = 0, φ) as a functions of φ at fixed time. These results are for the

alternative Bödewadt state (1/Ŵe = 0) shown in figure 11.

of η for this new solution. Since 1/Ŵe = 0 there is no flow at η = 0 since the disk is
stationary.

In figure 12 we again refer to the same nonlinear state illustrated in figure 11;
however in this case we show the mean axial velocity at infinity and a shear stress
component at the disk over one period of the motion.

Finally, in figure 13 we show the velocity field at a fixed unit radius in the (η, φ+Ωt)-
plane. As noted elsewhere (figure 12) the oscillatory axial flow at infinity is clearly
seen.

3.4. Temporally periodic axisymmetric states

The temporal stability of the axisymmetric rotating-disk equations to axisymmetric
modes has been considered by Bodonyi & Ng (1984). These results showed a stability
transition at the limit point of the solution branches shown in figure 1, with all
higher-branch modes having at least one unstable eigenvalue. We must also note that
the stability analysis is complicated by the presence of a damped continuous spectrum
and some subtleties can arise that we shall not discuss here.

A further result of Bodonyi & Ng is that, at a value of 1/Ŵe ≈ −0.03, a Hopf
bifurcation leads to a limit-cycle solution to the axisymmetric rotating-disk equations.
This result agrees with the data obtained for the initial-value problem as presented
by Bodonyi (1978).

We do not give a detailed account of these states here, but we do note that
the numerical method employed to calculate the nonlinear, non-axisymmetric states
presented in the previous sections can also be applied to these axisymmetric, periodic
states simply by taking λ = 0. Apart from some minor quantitative differences arising
from the limited resolution available to the initial-value calculations of Bodonyi
(1978), we have been able to verify our current method by direct computation of the
limit-cycle states.
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Figure 13. The instantaneous velocity field at a fixed radius, in the (η, φ)-plane for the alternative

Bödewadt state (at 1/Ŵe = 0). As noted in the preceding figure, the axial flow at the edge of the
boundary layer changes sign as φ varies. See figure 11 for details of the numerical parameters.
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Figure 14. Nonlinear, temporally periodic, axisymmetric states arising from a Hopf bifurcation

near Ŵe ≈ −25.3.

In figure 14 we present some details of the finite-amplitude limit-cycle solutions
that arise from the Hopf bifurcation. The calculations shown in the figure have been
performed with 451 equally spaced grid points over a domain of η ∈ [0, 30]. It must
be noted that further grid refinement can alter the location of the Hopf bifurcation
slightly, providing a value of 1/Ŵe ≈ −0.0367 (compared to Bodonyi & Ng’s value
of −0.03) but making little qualitative difference to the finite-amplitude states.
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As can be observed from figure 14, the computations with six modes terminated
at a critical value of Ŵe, but could be continued to slightly larger values (before
terminating again) by increasing the number of harmonics to eight. It seems likely
that the series representation fails at some critical value of Ŵe as has already been
suggested for the non-axisymmetric states.

The structure of the limit-cycle solution branch is more complicated than shown in
figure 14. We have computed the evolution for the initial-value problem corresponding
to an initial state of rigid-body rotation at unit frequency, with an impulsive change
in the rotation rate of the disk to 1/Ŵe. Computations of this sort again confirm the
finite-amplitude limit-cycle states described above, and have been presented previously
by Bodonyi (1978). However, further investigation suggests that the limit-cycle state
undergoes a period doubling at a critical value of Ŵe. One may expect therefore that
a Floquet analysis of the states shown in figure 14 will reveal a stability transition at
a finite amplitude and the existence of a further (period doubled) branch appearing
at some critical value of the rotation rate.

The initial-value problem for the flow over a rotating disk has also been considered
by Bodonyi & Stewartson (1977) and Stewartson, Simpson & Bodonyi (1982), in which
the boundary-layer structure was shown to break down at a finite time when Ŵe = −1.
Similar finite-time singularities can be located for Wcrit < Ŵe < −0.1605, that is, for a
range of values beyond the limit point of the axisymmetric solution branches shown in
figure 1(a). Outside this range, the boundary layer evolves to a branch-1 steady-state
solution if Ŵe > −0.1605 or, when in the range WHopf < Ŵe < Wcrit, a limit-cycle
solution is achieved.

The boundary Ŵe = Wcrit, which separates an evolution to a limit cycle from one to
a finite-time singularity, is not clearly defined in the existing literature. In fact, great
care is required when performing computations relevant to the initial value problem
in this region of parameter space. If multiple evolutions are obtained over a range
of values of Ŵe (near Ŵe = Wcrit) and the post-transient behaviour is examined, it
is possible to obtain a limit-cycle solution, followed by a period-doubling cascade to
chaos and eventually a finite-time breakdown as Ŵe is increased. Nevertheless, it is
far from clear that such chaotic behaviour is a genuine property of the continuous
system rather than just the discretized equations. In particular, the region of parameter
space in which chaotic behaviour is found is observed to shrink with continued grid
refinement.

One possibility is that Wcrit may be associated with a point at which the finite-
amplitude periodic solutions of figure 14 terminate with a singular structure, and
beyond this point the temporal evolution of the solution ends in a finite-time break-
down.

4. Discussion
In this paper we have examined the flow above a rotating disk in a rotating fluid.

By relaxing assumptions concerning the axisymmetry of the flow we have shown that
a large class of alternative solutions is available to this classical configuration.

These alternative states are non-axisymmetric flow regimes, although the axisym-
metric boundary conditions are still satisfied at the disk surface and at infinity. With
the exception of one sub-class of flow (the n = 2 mode), these states require a
boundary-layer approximation based on a small Ekman number. The more general
class of non-axisymmetric boundary-layer states takes the form of nonlinear waves
that propagate azimuthally about the axis of rotation (in the sense of the disk/cone if
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Ω < 0, and in the opposite sense if Ω > 0). Although our nonlinear results concentrate
on the flat-disk geometry, similar states relevant to a boundary layer near a conical
wall can be developed by effectively taking a non-integer azimuthal wavenumber. In-
deed, it was addressing the effect of a conical geometry on the exact n = 2 (stationary)
state that forced a consideration of travelling modes.

We have shown that there is an extremely broad range of non-axisymmetric states
associated with the well-known non-uniqueness of the axisymmetric states. However,
non-axisymmetric modes are not just found near to Ŵe = 0. By applying the same
bifurcation analysis ‘near’ the classical axisymmetric Bödewadt solution, we have
been able to generate a fully nonlinear, non-axisymmetric boundary-layer state as an
alternative flow above a stationary plane in a rotating fluid.

Several of the solution branches have been continued from the bifurcation points
to fully nonlinear non-axisymmetric states. In general, the states we have located
either grow to amplitudes for which calculations are difficult (in terms of truncation
of the series) or fail at finite values of Ŵe with what appears numerically to be some
form of singular structure.

Showing the existence of non-axisymmetric states is of some interest in itself;
however, for practical purposes a full and detailed consideration of the stability of
these states is required. We do not provide such a description here, but we can make
some comments on the temporal stability of the more easily located non-axisymmetric
branches in the vicinity of the corresponding bifurcation point.

We must first preface any comments concerning the stability of such weakly
nonlinear states by stating the class of perturbations to be considered. When discussing
the stability of these states we are implicitly assuming the disturbance to be within
the same class of solution, and therefore to possess the same radial similarity. We do
recognise however that the stability of the states to other classes of perturbation can
also be considered (for example, see Lingwood 1995). Indeed, it must also be noted
that it is not always clear that a solution of von Kármán form is achievable even in
a sub-region of a finite flow domain. Nevertheless, some comments on the stability to
self-similar perturbations are important.

This work has essentially derived nonlinear travelling-wave states for a boundary-
value problem, a procedure that has been applied to many other systems, and in
particular arises when considering the stability of some plane channel flows. As in
the case of channel flows, Stuart (1960), it is straightforward to generate a weakly
nonlinear description of the wave solution in the vicinity of the bifurcation points. In
particular, a perturbation expansion of the form

Ŵe = Ŵbif + ε, 0 < ε� 1, (4.1)

can be applied with

U = U 0(η) + ε1/2{A(τ)U 11(η)E + c.c.}
+ε{U 2(η) + A20(τ)U 20(η) +U 22(η)E2 + c.c.}
+ε3/2{A31(τ)U 31(η)E + A33(τ)U 33(η)E3 + c.c.}+ · · · , (4.2)

where τ = εt, E = exp [i(λφ+ Ωt)], and λ is required to be an integer for a flat-disk
geometry.

In such an expansion, U 11(η) is normalized in some arbitrary manner and A(τ)
is an amplitude measure. At O(ε0) we obtain the rotating-disk equations, then at
O(ε1/2) the eigenvalue problem (2.2) is recovered, which determines the location of
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the bifurcation Ŵε = Ŵbif and the real frequency of the wave, Ω. At this stage the
amplitude A(τ) is undetermined.

At O(ε), one determines U 2 as a Taylor-series correction to the mean flow, while
A20 = A2 and U 22 is derived from an inhomogeneous system. At O(ε3/2) an orthogo-
nality condition must be satisfied, which leads to the usual Stuart–Landau amplitude
equation

Aτ = σA− βA|A|2, (4.3)

with σ and β complex constants. The two constants can be obtained in the form of
integrals of the lower-order solutions and the adjoint system. In fact, the complex
constant σ = i∂Ω/∂Ŵe evaluated at Ŵe = Wbif , and can be obtained from a solution
of the O(ε1/2) eigenvalue problem by allowing for a complex Ω.

This procedure can be applied to the range of solutions presented in this current
work, including the axisymmetric limit-cycle behaviour described in § 3.4. For the
exact n = 2 state described in Appendix A, the bifurcation is found to be sub-
critical, with nonlinear effects acting to destabilize the wave (σr < 0, βr < 0). One
therefore expects the exact solution branch to be unstable unless re-stabilized at some
finite amplitude. However, this suggests that in this region of parameter space, a
threshold amplitude response should be found for perturbations (of this form) to the
axisymmetric solution branches. This raises the question of the exact nature of the
large-time evolution given such a perturbation, and in this way the stationary exact
solution branch relates to the unsteady analysis of Hall et al. (1992).

For the non-axisymmetric states arising from higher-branch solutions, it must be
noted that although a neutrally stable mode obviously exists at the bifurcation point,
there are also other unstable modes of different azimuthal wavenumber. For example,
at the bifurcation to the n = 1 state described in § 3.1 the axisymmetric state is also
unstable to modes of azimuthal wavenumber 2. Similarly, near the bifurcation to the
n = 3 state, the axisymmetric solution is unstable to modes of azimuthal wavenumber
n = 1, 2 and, in agreement with the results of Bodonyi & Ng (1984), n = 0.

For the non-axisymmetric travelling-wave state arising near the Bödewadt limit the
stability is somewhat different. The n = 1 state near 1/Ŵe ≈ 0.06 arises through a
supercritical bifurcation from the axisymmetric state (σr > 0, βr > 0 in an analogous
expansion of the form 1/Ŵe = 1/Wbif − ε, with ε > 0). Therefore, one expects the
weakly nonlinear n = 1 solution to be stable under our assumptions concerning the
disturbance class. If this is the case, and the new branch does not destabilize beyond
some fully nonlinear stage, it leaves open the possibility that the non-axisymmetric
state of § 3.3 is the appropriate radially self-similar solution for a rotating flow
over an infinite fixed plane. Without a detailed linear stability analysis of the finite-
amplitude travelling-wave states we cannot draw further conclusions about the new
non-axisymmetric states and these details remain a subject for future work.

However, it must be noted that in the Bödewadt limit, the net mass transport
in the layer above the disk is directed radially towards the axis of rotation. As
a consequence one might expect edge effects to propagate inwards, increasing the
likelihood of destroying any self-similarity in an experimental configuration. (For the
fully non-axisymmetric state, the net transport of fluid is still directed inwards.) Little
experimental work has been performed for this flow; however, the lower surface of a
circular cylinder undergoing spin-down to rest can develop a Bödewadt-like flow at a
sufficient distance from the sidewalls. In this geometry a critical Reynolds number of
25 (based on radial distance from the axis of rotation and initial rotation rate) has
been reported by Savas (1987). Beyond this ‘critical’ radius, circular and spiral waves



Non-axisymmetric rotating-disk flows 311

have been observed. In the experiments of Savas (1987), large-time measurements are
prohibited by the effects of a centrifugal instability that convects from the cylindrical
walls.

Much of the motivation for this work arose from observations of non-axisymmetric
flow regimes in spin-down experiments involving conical containers and a stably
stratified fluid. It is hoped that a continuation of the results presented herein to
the case of a density-stratified fluid may allow for some detailed comparisons with
laboratory data. We note that in such density stratified flows, the edge conditions are
less of an issue since boundary-layer transport can be inhibited by buoyancy effects.

The authors would like to acknowledge the financial support of the EPSRC.

Appendix A. Exact, non-axisymmetric, stationary states
As has been noted by HDF, an exact, stationary, non-axisymmetric solution exists;

in this appendix we present further properties of the solution. It is easy to verify that
a steady solution to (1.3)–(1.6) exists in the form

Û = U0(η) +U1(η) cos(2φ), (A 1)

V̂ = V0(η), (A 2)

Ŵ = W0(η)−U1(η) sin(2φ), (A 3)

Qφ = 0, (A 4)

which also leads to an exact cancellation of the terms proportional to E in the
system (1.3)–(1.6). An azimuthal wavenumber of 2 is the only case in which such a
cancellation occurs, whilst the ±U1(η) coefficient of the φ-dependence in the radial
and azimuthal velocity components is required to satisfy continuity, since V̂ remains
axisymmetric.

This remarkable form of exact solution corresponds to a non-axisymmetric flow
above a rotating disk; nevertheless, the axial velocity induced by mass transport in
the boundary layer remains axisymmetric.

The solution (A 1)–(A 4) leads to a nonlinear governing system of the form

U2
0 + V0U

′
0 −W 2

0 +U2
1 = U ′′0 − Ŵ 2

e , (A 5)

2U0W0 + V0W
′
0 = W ′′

0 , (A 6)

2U0 + V ′0 = 0, (A 7)

2U0U1 + V0U
′
1 = U ′′1 , (A 8)

to be solved subject to the boundary conditions

U0 = V0 = U1 = 0, W0 = 1 on η = 0, (A 9)

and

U0, U1 → 0, W0 → Ŵe as η →∞. (A 10)

The large-η structure of (A 5)–(A 10) is simply that of the rotating-disk equations,
with the non-axisymmetric component in the form

U1(η) ∼ u1 exp{V̂∞η} as η →∞. (A 11)

Therefore, we may only expect this class of solution to exist with V̂∞ < 0.
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Figure 15. Profiles of the components U0, V0,W0, U1 for a fully nonlinear non-axisymmetric state

at Ŵe = −0.1, U ′1(0) ≈ 0.025.

The system (A 5)–(A 10) still obviously admits solutions with U1 ≡ 0, that is,
the classical axisymmetric rotating-disk states. However, as shown by HDF, there
is a critical value of the parameter Ŵe ≈ −0.14485 at which a symmetry-breaking
bifurcation occurs with a nonlinear non-axisymmetric solution available in the region
Ŵe ∈ [−0.14485, 0).

A figure showing the relative position of the bifurcated branch of non-axisymmetric
solutions is given by HDF as figure 18. We note that the behaviour of the non-
axisymmetric solutions as Ŵe → 0− is non-trivial. The structure of the solution in this
limit has been detailed by HDF; in particular, it has been shown that the lengthscale
η ∼ |Ŵe|−1/2 as Ŵe → 0−.

Figure 15 shows profiles of the velocity components U0, V0,W0 and U1 for a fully
nonlinear non-axisymmetric state at Ŵe ≈ −0.1, V∞ ≈ −0.2, U ′1(0) ≈ 0.025. In figure
16, we show the velocity field

U r̂ +W φ̂ = r(U0(η) +U1(η) cos 2φ)r̂ + r(W0(η)−U1(η) sin 2φ)φ̂, (A 12)

at fixed values of the scaled coordinate η, over a unit radial distance for the same
nonlinear state presented in figure 15. As noted by Hall et al. (1992), the form
of the non-axisymmetry in this class of solution when transformed into Cartesian
coordinates is a stagnation-point flow. This can be readily seen in figure 16(c), since
at this value of η (≈ 3.6), U0 and W0 are sufficiently small for the velocity field to be
dominated by the U1 non-axisymmetric components.

As shown in figure 16, when sufficiently close to (or far from) the disk surface the
flow is in rigid-body rotation. Since Ŵe < 0 the far-field fluid and the disk counter-
rotate, as can be seen by comparing 16(a) and 16(f). Similarly, since V̂∞ < 0, the axial
flow at ‘infinity’ is towards the disk, and the net transport near to the disk is radially
outwards.
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Figure 16. Velocity fields at fixed values of η for a nonlinear, non-axisymmetric state at Ŵe ≈ −0.1,

V̂∞ ≈ −0.2, U ′1(0) ≈ 0.025. The corresponding values of η are (a) η = 0, (b) η ≈ 2.41, (c) η ≈ 3.62,
(d) η ≈ 5.43, (e) η ≈ 9.05, (f) η ≈ 16.88. (The velocity field in (a) is scaled by a factor of 5).

Appendix B. An extension to a conical geometry

Here we provide some details on how to extend the analysis presented in Appendix
A to a conical geometry. Although, at first sight, this may seem superfluous, it is
the non-trivial nature of this simple extension that forces the consideration of other
travelling-wave states, showing that the exact solution is simply one of a broader
class of solutions.

It has been shown by HDF, and by Duck, Foster & Hewitt (1997), that the
equations governing the axisymmetric boundary layer on the inside of a rotating cone
in a rotating homogeneous fluid can also be reduced to the rotating-disk equations
(1.9)–(1.11). As noted by HDF however, when non-axisymmetric flows are considered
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the governing equations reduce to

Û2 + V̂ Ûη − Ŵ 2 + β−1Ŵ Ûφ = Ûηη − Ŵ 2
e , (B 1)

2ÛŴ + V̂ Ŵ η + β−1ŴŴ φ = Ŵ ηη, (B 2)

V̂ V̂η + β−1Ŵ V̂φ = −Qη + V̂ηη, (B 3)

2Û + V̂η + β−1Ŵφ = 0. (B 4)

The conical shell is orientated with the walls at an angle of π/2 − α to the axis of
rotation (as shown in figure 2), and the parameter β has been introduced, where

β = cos α. (B 5)

Note that as α → 0 (a flat disk), β → 1 and (B 1)–(B 4) reduces to the non-
axisymmetric version of the rotating-disk equations (1.3)–(1.6) under a boundary-
layer approximation. This system is formally obtained following a boundary-layer
approximation based on E � 1 applied to the full governing system in a spherical-
polar coordinate system centred at the apex of the cone.

Although the appropriate coordinate system is spherical in this case, the same
notation applied to the flow over a disk has been re-used here for simplicity; for
example, in this case the boundary-layer coordinate is defined E1/2η = (π/2− α)− θ,

where θ is the meridional coordinate measured from the axis of rotation. Here Û, V̂
denote velocity components that are parallel to the boundary in the radial direction
and normal to the boundary respectively, while Ŵ is the azimuthal component.

The boundary conditions for (B 1)–(B 4) are as for the flat-disk case, with an
axisymmetric rigid-body rotation (about the axis of symmetry of the cone) far from
the boundary, together with no-slip and impermeability conditions on the wall.

It is the minor difference between (B 1)–(B 4) and the exact system (1.3)–(1.6) that al-
lows some interesting comments to be made concerning the form of non-axisymmetric
states in the conical geometry, which in turn leads to a further extension of the class
of non-axisymmetric solutions. It can be seen immediately that a transformation

∂

∂φ
→ 1

β

∂

∂φ
(B 6)

in the non-axisymmetric form of the rotating-disk equations (1.3)–(1.6) is sufficient to
consider the equivalent conical analogue (B 1)–(B 4). Since the conical description can
be obtained through this transformation, we can apply the previous results concerning
the location of the bifurcation point to the conical geometry with no further work.

The bifurcation to an exact non-axisymmetric solution (as discussed in Appendix
A) is obtained by effectively looking for weakly non-axisymmetric solutions in the
form

(Û, Ŵ , V̂ )T = (U0(η),W0(η), V0(η))T + ε(Ũ(η), W̃ (η), Ṽ (η))T exp{inφ}, (B 7)

where ε � 1. In this way, (U0,W0, V0) are required to satisfy the axisymmetric
rotating-disk equations, while the O(ε) terms provide a linear eigenvalue problem

F(Ŵe, n) = 0. (B 8)

This eigenvalue relation determines a set of complex eigenvalues ni for a given real
value of Ŵe (and associated leading-order rotating-disk solution). The location of the
bifurcation point is then obtained as the value of Ŵe for which a real eigenvalue
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exists that is also an integer (to satisfy the azimuthal periodicity constraint). In this
way we have shown that an azimuthally periodic state can be found with

n = 2 at Ŵe ≈ −0.14485. (B 9)

Given the transformation of flat-disk solutions to conical solutions through (B 6),
we can immediately observe that when α 6= 0 the equivalent eigenvalue problem is
obtained in the form

F(Ŵe, nβ
−1) = 0. (B 10)

It is therefore trivial to see that the linear eigenvalue relation has a solution with

n

cos α
= 2 at Ŵe ≈ −0.14485. (B 11)

However, since the bifurcated solutions are required to be periodic in the azimuthal
direction, it is necessary for n to be an integer (the azimuthal wavenumber). We
are therefore forced to conclude that a bifurcation can only be found to a non-
axisymmetric state with azimuthal wavenumber n = 2 when α = 0 (the flat disk) or a
wavenumber of n = 1 when α = π/3 (a conical container, with cos α = 1/2).

The description of this n = 2 mode, as presented in Appendix A, is therefore
incomplete in the sense that it fails to provide any non-axisymmetric states for any
cone angles other than α = 0 or α = π/3. It seems counter-intuitive to suppose that
the non-axisymmetric branch of solutions cannot be continued in the parameter α,
since the geometry can be made conical in a continuous manner starting from a flat
disk solution.

To resolve how the n = 2 bifurcation for the flat disk (α = 0) and the n = 1
bifurcation in the conical case (α = π/3) are connected, one must seek a wider class
of solution in a form described in § 2.1.
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